Kinetics of enzymatic modification of quercetin with cysteine by horseradish peroxidase.
نویسندگان
چکیده
The kinetic mechanism of enzymatic modification of flavonol quercetin with L-cysteine by horseradish peroxidase (HRP) was studied. Reaction of modification of quercetin was followed by recording spectral changes over time at 380 nm. All reactions were performed in 100 mM phosphate buffer pH, 6.0 at 20 degrees C. Kinetic parameters were determined from graphics of linear Michaelis-Menten equation. The values obtained at specified intervals were: V(max) = 0.17 divided by 0.91 deltaA380/min, K(m) = 0.023 divided by 0.5 mM, k(cat) = 0.21 divided by 1.14 deltaA380/min x nM(-1) and V(max)/K(m) = 0.83 divided by 26.55 deltaA380/min x mM(-1). It was found that all investigated reactions of the modification of quercetin with L-cysteine by HRP followed an ordered mechanism. We propose that HRP initially reacts with H2O2 than with quercetin and finally with L-cysteine, leading to the introduction of L-cysteine in the structure of quercetin.
منابع مشابه
بررسی کارایی فرایند آنزیمی هورس رادیش پراکسیداز (HRP) و آب اکسیژنه در حذف آلکیل بنزیل سولفونات خطی (LAS) از محیط های آبی
Background and purpose: Enzymatic treatment, due to various benefits, has attracted many researchers since long time ago. Anionic detergents are one of the largest families of detergents that entered into the environment in recent decades. This study investigated the effect of horseradish peroxidase enzyme process on the removal of linear alkaline benzyl sulfonate (LAS) from aqueous solutions. ...
متن کاملQuercetin oxidation by horseradish peroxidase: the effect of UV-B irradiation
Horseradish peroxidase (HRP), a highly investigated member of the peroxidase family, has been known − among many other biological activities − to catalyze the oxidation of flavonoids and phenolic substrates overall, quercetin among them. On the other hand, quercetin is very well known for its expressed antioxidant activities, which in the case of UV external radiation can be expressed partly in...
متن کاملELUCIDATION OF pK VALUES FOR ACTIVE SITE OF HORSERADISH PEROXIDASE AND BINDING STUDY OF INTERACTION WITH N-PHENYL BENZHYDROXAMIC ACID USING A SPECIAL DIFFERENCE SPECTROPHOTOMETRIC TECHNIQUE
The binding behavior of a competitive inhibitor, N-phenylbenzhydroxamic acid (BHA) against horseradish peroxidase (HRP) was studied in order to understand and predict the interaction mechanism of hydrogen donors with the enzyme. The dissociation constants of the complexes of HRP-BHA, HRP-donor and HRP-BHA-azide were estimated at specified conditions by difference spectroscopy. The binding s...
متن کاملControlling enzymatic activity and kinetics in swollen mesophases by physical nano-confinement.
Bicontinuous lipid cubic mesophases are widely investigated as hosting matrices for functional enzymes to build biosensors and bio-devices due to their unique structural characteristics. However, the enzymatic activity within standard mesophases (in-meso) is severely hindered by the relatively small diameter of the mesophase aqueous channels, which provide only limited space for enzymes, and re...
متن کاملFree radical metabolites of L-cysteine oxidation.
The oxidation of L-cysteine by horseradish peroxidase in the presence of oxygen forms a thiyl free radical as demonstrated with the spin-trapping ESR technique. Reactions of this thiyl free radical result in oxygen consumption, which is inhibited by the spin trap 5,5'-dimethyl-1-pyrroline-N-oxide. Cysteine sulfinic acid, a cysteine metabolite, is a poorer substrate for horseradish peroxidase th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Indian journal of biochemistry & biophysics
دوره 50 3 شماره
صفحات -
تاریخ انتشار 2013